Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Kinetic analysis of manganese peroxidase. The reaction with manganese complexes.

Identifieur interne : 000E09 ( Main/Exploration ); précédent : 000E08; suivant : 000E10

Kinetic analysis of manganese peroxidase. The reaction with manganese complexes.

Auteurs : I C Kuan [États-Unis] ; K A Johnson ; M. Tien

Source :

RBID : pubmed:8376363

Descripteurs français

English descriptors

Abstract

Manganese peroxidase from the lignin-degrading fungus Phanerochaete chrysosporium catalyzes the H2O2-dependent oxidation of Mn2+ to Mn3+. Presteady-state methods were employed to characterize the reactions of free and chelated Mn2+ with the 2-electron and 1-electron oxidized forms of the enzyme, compounds I and II, respectively. At pH 4.5, the optimum pH for steady-state turnover, the reaction of compound I with Mn2+, either free or complexed, is too rapid to measure by stopped flow methods. The reactions of compound I with Mn2+ can only be monitored under non-optimal conditions of pH 2.5. The reaction of compound II with Mn2+ is much slower than compound I. Chelators such as oxalate, lactate, and malonate facilitated the reaction of Mn2+ with compound II. In contrast, succinate, which does not readily form a complex with Mn2+, and polyglutamate, which is polymeric, were ineffective in stimulating the reaction of Mn2+ with compound II. The 1:1 chelator-Mn2+ complex is the preferred substrate for compound II; this conclusion is based on known formation constants for the various Mn2+ complexes. Steady-state kinetics studies were performed by directly measuring the initial rate of Mn3+ formation. The kcat values for the formation of Mn(3+)-oxalate, Mn(3+)-lactate, and Mn(3+)-malonate are 308, 211, and 220 s-1, respectively. The Km values for Mn(2+)-oxalate, Mn(2+)-lactate, and Mn(2+)-malonate are 13, 41, and 18 microM, respectively. These results collectively indicate that manganese peroxidase does not readily oxidize free (hexa-aquo) Mn2+ as previously proposed (Wariishi, H., Valli, K., and Gold, M. H. (1992) J. Biol. Chem. 267, 23688-23695), but the Mn2+ has to be chelated to support steady-state turnover.

PubMed: 8376363


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Kinetic analysis of manganese peroxidase. The reaction with manganese complexes.</title>
<author>
<name sortKey="Kuan, I C" sort="Kuan, I C" uniqKey="Kuan I" first="I C" last="Kuan">I C Kuan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802.</nlm:affiliation>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
<country>États-Unis</country>
<placeName>
<settlement type="city">University Park (Pennsylvanie)</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Johnson, K A" sort="Johnson, K A" uniqKey="Johnson K" first="K A" last="Johnson">K A Johnson</name>
</author>
<author>
<name sortKey="Tien, M" sort="Tien, M" uniqKey="Tien M" first="M" last="Tien">M. Tien</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1993">1993</date>
<idno type="RBID">pubmed:8376363</idno>
<idno type="pmid">8376363</idno>
<idno type="wicri:Area/Main/Corpus">000D86</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D86</idno>
<idno type="wicri:Area/Main/Curation">000D86</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D86</idno>
<idno type="wicri:Area/Main/Exploration">000D86</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Kinetic analysis of manganese peroxidase. The reaction with manganese complexes.</title>
<author>
<name sortKey="Kuan, I C" sort="Kuan, I C" uniqKey="Kuan I" first="I C" last="Kuan">I C Kuan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802.</nlm:affiliation>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
<country>États-Unis</country>
<placeName>
<settlement type="city">University Park (Pennsylvanie)</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Johnson, K A" sort="Johnson, K A" uniqKey="Johnson K" first="K A" last="Johnson">K A Johnson</name>
</author>
<author>
<name sortKey="Tien, M" sort="Tien, M" uniqKey="Tien M" first="M" last="Tien">M. Tien</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="1993" type="published">1993</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (enzymology)</term>
<term>Carboxylic Acids (metabolism)</term>
<term>Chelating Agents (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Manganese (metabolism)</term>
<term>Mathematics (MeSH)</term>
<term>Models, Theoretical (MeSH)</term>
<term>Peroxidases (metabolism)</term>
<term>Protein Binding (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides carboxyliques (métabolisme)</term>
<term>Basidiomycota (enzymologie)</term>
<term>Chélateurs (métabolisme)</term>
<term>Cinétique (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Manganèse (métabolisme)</term>
<term>Mathématiques (MeSH)</term>
<term>Modèles théoriques (MeSH)</term>
<term>Peroxidases (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carboxylic Acids</term>
<term>Chelating Agents</term>
<term>Manganese</term>
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides carboxyliques</term>
<term>Chélateurs</term>
<term>Manganèse</term>
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Kinetics</term>
<term>Mathematics</term>
<term>Models, Theoretical</term>
<term>Protein Binding</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Liaison aux protéines</term>
<term>Mathématiques</term>
<term>Modèles théoriques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Manganese peroxidase from the lignin-degrading fungus Phanerochaete chrysosporium catalyzes the H2O2-dependent oxidation of Mn2+ to Mn3+. Presteady-state methods were employed to characterize the reactions of free and chelated Mn2+ with the 2-electron and 1-electron oxidized forms of the enzyme, compounds I and II, respectively. At pH 4.5, the optimum pH for steady-state turnover, the reaction of compound I with Mn2+, either free or complexed, is too rapid to measure by stopped flow methods. The reactions of compound I with Mn2+ can only be monitored under non-optimal conditions of pH 2.5. The reaction of compound II with Mn2+ is much slower than compound I. Chelators such as oxalate, lactate, and malonate facilitated the reaction of Mn2+ with compound II. In contrast, succinate, which does not readily form a complex with Mn2+, and polyglutamate, which is polymeric, were ineffective in stimulating the reaction of Mn2+ with compound II. The 1:1 chelator-Mn2+ complex is the preferred substrate for compound II; this conclusion is based on known formation constants for the various Mn2+ complexes. Steady-state kinetics studies were performed by directly measuring the initial rate of Mn3+ formation. The kcat values for the formation of Mn(3+)-oxalate, Mn(3+)-lactate, and Mn(3+)-malonate are 308, 211, and 220 s-1, respectively. The Km values for Mn(2+)-oxalate, Mn(2+)-lactate, and Mn(2+)-malonate are 13, 41, and 18 microM, respectively. These results collectively indicate that manganese peroxidase does not readily oxidize free (hexa-aquo) Mn2+ as previously proposed (Wariishi, H., Valli, K., and Gold, M. H. (1992) J. Biol. Chem. 267, 23688-23695), but the Mn2+ has to be chelated to support steady-state turnover.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">8376363</PMID>
<DateCompleted>
<Year>1993</Year>
<Month>10</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>268</Volume>
<Issue>27</Issue>
<PubDate>
<Year>1993</Year>
<Month>Sep</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Kinetic analysis of manganese peroxidase. The reaction with manganese complexes.</ArticleTitle>
<Pagination>
<MedlinePgn>20064-70</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Manganese peroxidase from the lignin-degrading fungus Phanerochaete chrysosporium catalyzes the H2O2-dependent oxidation of Mn2+ to Mn3+. Presteady-state methods were employed to characterize the reactions of free and chelated Mn2+ with the 2-electron and 1-electron oxidized forms of the enzyme, compounds I and II, respectively. At pH 4.5, the optimum pH for steady-state turnover, the reaction of compound I with Mn2+, either free or complexed, is too rapid to measure by stopped flow methods. The reactions of compound I with Mn2+ can only be monitored under non-optimal conditions of pH 2.5. The reaction of compound II with Mn2+ is much slower than compound I. Chelators such as oxalate, lactate, and malonate facilitated the reaction of Mn2+ with compound II. In contrast, succinate, which does not readily form a complex with Mn2+, and polyglutamate, which is polymeric, were ineffective in stimulating the reaction of Mn2+ with compound II. The 1:1 chelator-Mn2+ complex is the preferred substrate for compound II; this conclusion is based on known formation constants for the various Mn2+ complexes. Steady-state kinetics studies were performed by directly measuring the initial rate of Mn3+ formation. The kcat values for the formation of Mn(3+)-oxalate, Mn(3+)-lactate, and Mn(3+)-malonate are 308, 211, and 220 s-1, respectively. The Km values for Mn(2+)-oxalate, Mn(2+)-lactate, and Mn(2+)-malonate are 13, 41, and 18 microM, respectively. These results collectively indicate that manganese peroxidase does not readily oxidize free (hexa-aquo) Mn2+ as previously proposed (Wariishi, H., Valli, K., and Gold, M. H. (1992) J. Biol. Chem. 267, 23688-23695), but the Mn2+ has to be chelated to support steady-state turnover.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kuan</LastName>
<ForeName>I C</ForeName>
<Initials>IC</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Johnson</LastName>
<ForeName>K A</ForeName>
<Initials>KA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tien</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>1-P42ES04922-01</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002264">Carboxylic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002614">Chelating Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>42Z2K6ZL8P</RegistryNumber>
<NameOfSubstance UI="D008345">Manganese</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.13</RegistryNumber>
<NameOfSubstance UI="C051129">manganese peroxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002264" MajorTopicYN="N">Carboxylic Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002614" MajorTopicYN="N">Chelating Agents</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008345" MajorTopicYN="N">Manganese</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008433" MajorTopicYN="N">Mathematics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008962" MajorTopicYN="N">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1993</Year>
<Month>9</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1993</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1993</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">8376363</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>University Park (Pennsylvanie)</li>
</settlement>
<orgName>
<li>Université d'État de Pennsylvanie</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Johnson, K A" sort="Johnson, K A" uniqKey="Johnson K" first="K A" last="Johnson">K A Johnson</name>
<name sortKey="Tien, M" sort="Tien, M" uniqKey="Tien M" first="M" last="Tien">M. Tien</name>
</noCountry>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Kuan, I C" sort="Kuan, I C" uniqKey="Kuan I" first="I C" last="Kuan">I C Kuan</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E09 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E09 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:8376363
   |texte=   Kinetic analysis of manganese peroxidase. The reaction with manganese complexes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:8376363" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020